3D WATERTIGHT MESH GENERATION WITH UNCERTAINTIES

Laurent Caraffa
IGN, France
IQmulus, Final Workshop
Bergen, September 21, 2016

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318787.
3D watertight mesh generation with uncertainties

IQmulus workshop

Laurent Caraffa, Murat Yirci, Mathieu Brédif, Bruno Vallet

21 Sept 2016
Watertight mesh reconstruction

- **Input**
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- Watertight surface
Watertight mesh reconstruction

- Input
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- Watertight surface
Watertight mesh reconstruction

- **Input**
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- **Watertight surface**
Watertight mesh reconstruction

▶ Input
 ▶ Aerial Lidar (SAA - IGN).
 ▶ Terrestrial Lidar (MATIS - IGN).
 ▶ Photogrammetry (TS - IGN).

▶ Watertight surface
Watertight mesh reconstruction

Input

- Aerial Lidar (SAA - IGN).
- Terrestrial Lidar (MATIS - IGN).
- Photogrammetry (TS - IGN).

Watertight surface

How to merge?

How to scale?
Watertight mesh reconstruction

- Input
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- Watertight surface reconstruction
Watertight mesh reconstruction

- **Input**
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- Watertight surface reconstruction
Watertight mesh reconstruction

▶ Input
 ▶ Aerial Lidar (SAA - IGN).
 ▶ Terrestrial Lidar (MATIS - IGN).
 ▶ Photogrammetry (TS - IGN).

▶ Watertight surface
Watertight mesh reconstruction

▶ Input

▶ Aerial Lidar (SAA - IGN).
▶ Terrestrial Lidar (MATIS - IGN).
▶ Photogrammetry (TS - IGN).

▶ Watertight surface reconstruction

→ How to merge?
→ How to scale?
Watertight mesh reconstruction

- **Input**
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- **Output**
 - Watertight surface
Watertight mesh reconstruction

- **Input**
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- **Output**
 - Watertight surface
Watertight mesh reconstruction

⇒ Example of state of the art algorithm:

- **Input**
 - Aerial Lidar (SAA - IGN).
 - Terrestrial Lidar (MATIS - IGN).
 - Photogrammetry (TS - IGN).

- **Output**
 - Watertight surface
Watertight mesh reconstruction

⇒ Example of state of the art algorithm:

► Input
 ▶ Aerial Lidar (SAA - IGN).
 ▶ Terrestrial Lidar (MATIS - IGN).
 ▶ Photogrammetry (TS - IGN).

► Output
 ▶ Watertight surface

⇒ How to merge?
Watertight mesh reconstruction

⇒ Example of state of the art algorithm:

▶ Input
▶ Aerial Lidar (SAA - IGN).
▶ Terrestrial Lidar (MATIS - IGN).
▶ Photogrammetry (TS - IGN).

▶ Output
▶ Watertight surface

⇒ How to merge?
⇒ How to scale?
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.

⇒ The surface is the interface between inside and outside area.

- Local descriptor computation.
- Space discretization.
 - Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.
 - The surface is the interface between inside and outside area.

- Local descriptor computation.
- Space discretization.
 - Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.
- The surface is the interface between inside and outside area.
- Local descriptor computation.
- Space discretization.
- Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation

▶ Binary segmentation (Inside / Outside) of the 3D space.
⇒ The surface is the interface between inside and outside area.

Algorithm:

▶ Local descriptor computation.
▶ Space discretization.
⇒ Delaunay triangulation.
▶ Score computation.
▶ Optimization.
3D watertight mesh generation with uncertainties

Watertight surface reconstruction

Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.

⇒ The surface is the interface between inside and outside area.

Algorithm:

- Local descriptor computation.
- Space discretization.
- Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.

⇒ The surface is the interface between inside and outside area.

Algorithm:

- Local descriptor computation.
- Space discretization.
 - Delaunay triangulation.
- Score computation.
- Optimization.
3D watertight mesh generation with uncertainties
Watertight surface reconstruction

Approach

3D segmentation

▶ Binary segmentation (Inside / Outside) of the 3D space.
⇒ The surface is the interface between inside and outside area.

Algorithm:

▶ Local descriptor computation.
▶ Space discretization.
 → Delaunay triangulation.
▶ Score computation.
▶ Optimization.
Approach

3D segmentation

▶ Binary segmentation (Inside / Outside) of the 3D space.

⇒ The surface is the interface between inside and outside area.

Algorithm:

▶ Local descriptor computation.
▶ Space discretization.
 → Delaunay triangulation.
▶ Score computation.
▶ Optimization.
Approach

3D segmentation

▶ Binary segmentation (Inside / Outside) of the 3D space.

⇒ The surface is the interface between inside and outside area.

Algorithm:

▶ Local descriptor computation.
▶ Space discretization.
 → Delaunay triangulation.
▶ Score computation.
▶ Optimization.
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.
 ⇒ The surface is the interface between inside and outside area.

Algorithm:

- Local descriptor computation.
- Space discretization.
 → Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.
- The surface is the interface between inside and outside area.

Algorithm:

- Local descriptor computation.
- Space discretization.
 - Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation

- Binary segmentation (Inside / Outside) of the 3D space.

⇒ The surface is the interface between inside and outside area.

Algorithm:

- Local descriptor computation.
- Space discretization.
 → Delaunay triangulation.
- Score computation.
- Optimization.
Approach

3D segmentation
 - Binary segmentation (Inside / Outside) of the 3D space.
 ⇒ The surface is the interface between inside and outside area.

Algorithm:
 - Local descriptor computation.
 - Space discretization.
 → Delaunay triangulation.
 - Score computation.
 - Optimization.
Results

Mesh confidence

![Mesh confidence diagram](image)
Results

Mesh confidence

3D watertight mesh generation with uncertainties

Watertight surface reconstruction

Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence

![Image of mesh confidence and additional results](image-url)
3D watertight mesh generation with uncertainties

Watertight surface reconstruction

Results

Mesh confidence

![Mesh confidence](image)

![Mean error](image)
Results

Mesh confidence

![Image of mesh confidence with weak to strong range]

3D watertight mesh generation with uncertainties
Watertight surface reconstruction

⇒ Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence: weak | strong

![Images of mesh confidence and error graph]

Mean error vs. Nb merges graph:

- Mean error decreases as Nb merges increase.
Results

Mesh confidence

3D watertight mesh generation with uncertainties
Watertight surface reconstruction

Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence

3D watertight mesh generation with uncertainties
Watertight surface reconstruction

Results

⇒ Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence

![Mesh confidence images](image_url)
Results

Mesh confidence

![Image of mesh confidence]

![Image of mean error vs. number of merges]

Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence: weak to strong
3D watertight mesh generation with uncertainties

Results

Mesh confidence

![Mesh confidence image]

![Graph showing mean error over number of merges]

Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence weak strong

3D watertight mesh generation with uncertainties

Watertight surface reconstruction
3D watertight mesh generation with uncertainties

Results

Mesh confidence

![Image of mesh confidence with weak to strong scale]

![Image of 3D model with mesh confidence map]

![Graph showing mean error vs. number of merges]

Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence

![Image of mesh confidence with weak to strong scale]

![Image of 3D models with error graph]

Mean error vs. Nb merges

Acceptance in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence

![Mesh confidence diagram](image)

![Graph showing mean error vs. number of merges](image)
Results

Mesh confidence

![Mesh confidence with examples]

![Graph showing mean error vs number of merges]

3D watertight mesh generation with uncertainties

Watertight surface reconstruction

Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Results

Mesh confidence

![Image of mesh confidence with weak to strong scale]

![Graph showing mean error over number of merges]
Results

⇒ Accepted in ACCV16: 3D watertight mesh generation with uncertainties from ubiquitous data.
Out-of-core approach

<table>
<thead>
<tr>
<th>Description</th>
<th>Tiling</th>
<th>Simplification</th>
<th>Triangulation</th>
<th>Score Computation</th>
<th>Segmentation</th>
<th>Surface Extraction</th>
</tr>
</thead>
</table>
Out-of-core approach
Out-of-core approach

Tiling

Descriptor

Sco

Score computation

Segmentation

Surface extraction

Tiling

Descriptor

Sco

Score computation

Segmentation

Surface extraction
Out-of-core approach

Descriptor

Tiling

Simplification

3D watertight mesh generation with uncertainties

Out-of-core approach
3D watertight mesh generation with uncertainties

Out-of-core approach

Descriptor
Tiling
Simplification
Triangulation

Out-of-core approach
3D watertight mesh generation with uncertainties

Out-of-core approach

Descriptor
Tiling
Simplification
Triangulation
3D watertight mesh generation with uncertainties

Out-of-core approach
Out-of-core approach

- Descriptor
- Tiling
- Simplification
- Triangulation
- Score computation
- Segmentation
Out-of-core approach

- Descriptor
- Tiling
- Simplification
- Triangulation
- Score computation
- Segmentation
- Surface extraction
Out-of-core approach
3D watertight mesh generation with uncertainties

Results
Results
Results
Thank you.

laurent.caraffa@ign.fr